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Abstract. We consider parallel, three-dimensional transonic Eulew flising the PETSc-
FUN3D application, which employs pseudo-transient NewKoylov methods. Solving a large,
sparse linear system at each nonlinear iteration dominlgesverall simulation time for this
fully implicit strategy. This paper presents a polyaldgamiic technique for adaptively select-
ing the linear solver method to match the numeric propexiethe linear systems as they
evolve during the course of the nonlinear iterations. Oyreach combines more robust, but
more costly, methods when needed in particularly challepghases of solution, with cheaper,
though less powerful, methods in other phases. We demtmshat this adaptive, polyalgo-
rithmic approach leads to improvements in overall simalatime, is easily parallelized, and is
scalable in the context of this large-scale computation& flynamics application.

1. INTRODUCTION

Many time-dependent and nonlinear computational fluid dyina (CFD) applications in-
volve the parallel solution of large-scale, sparse lingatesns. Typically, application devel-
opers select a particular algorithm to solve a given lingatesn and keep this algorithm fixed
throughout the simulation. However, it is difficult to selecpriori the most effective algo-
rithm for a given application. Moreover, for long-runningpications in which the numerical
properties of the linear systems change as the simulatiogr@sses, a single algorithm may
not be best throughout the entire simulation. This sitiahas motivated us to develop an
adaptive, polyalgorithmic approach for linear solversjclifthis paper discusses in the con-
text of parallel, three-dimensional transonic Euler floingsPETSc-FUN3D [2]. This ap-
plication employs pseudo-transient Newton-Krylov methéar a fully implicit solution. We
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present a technique for adaptively selecting the linearesahethods to match the numeric
properties of the linearized Newton systems as they evalvimgl the course of the nonlinear
iterations. Our approach combines more robust, but morycosethods when needed in par-
ticularly challenging phases of the solution, with fasteough less powerful, methods in other
phases. Our previous work focused on sequence-basedadastiristics in an uniprocessor
environment [4,5,9]. In this paper, we extend our researdolve a more complicated parallel
application, where we demonstrate that the adaptive ppdydlhmic approach can be easily
parallelized, is scalable, and can lead to improvementsenadl simulation time.

The remainder of this paper is organized as follows. Se@iamroduces our motivating
application. Section 3 explains our approach to adaptilxeessy and Section 4 presents some
parallel experimental results. Section 5 discusses ceiueia and directions of future work.

2. PARALLEL COMPRESSIBLE FLOW EXAMPLE

FUN3D is an unstructured mesh code originally developed biKVAnderson of the NASA
Langley Research Center [1] for solving the compressible aodnpressible Navier-Stokes
equations. This code uses a finite volume discretizatioh witvvariable order Roe scheme
on a tetrahedral, vertex-centered mesh. Anderson et akegubntly developed the parallel
variant PETSc-FUN3D [2], which incorporates MeTiS [7] foesh partitioning and the PETSc
library [3] for the preconditioned Newton-Krylov family afnplicit solution schemes.

This paper focuses on solving the unsteady compressitde-timensional Euler equations
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Herep, E, andU represent the density, energy, and velocity in the diraatibthe outward
normal to a cell face, respectively. The pressure fielsl determined by the equation of state
for a perfect gas (given above). Also the cell volurig {s enclosed by the cell boundar§)

We solve the nonlinear system in Equation (1) with pseunesitepping [8] to advance to-
wards an assumed steady state. Using backward Euler ticretizsition, Equation (1) becomes

) 4 ) =0, @)
where At — oo as/ — oo, u is a vector of unknowns representing the state of the system,
and f(u) is a vector-valued function of residuals of the governingatmpns, which satisfies
f(u) = 0in the steady state.

This code employs Roe’s flux-difference splitting to disizethe convective terms. Initially
Equation (2) is discretized by using a first-order scheme. Mthe nonlinear residual sinks
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Figure 1. Mach contours on the ONERA M6 wing at freestream Maghber = 0.839.

below a given threshold, a second-order discretizatiorp@ied. The timestep is advanced
toward infinity by a power-law variation of the switched aviobn/relaxation (SER) heuristic of
Mulder & Van Leer [10]. To be specific, within each of the ficsder and second-order phases
of computation we adjust the timestep according to the CFLbarm

0 (o
Né‘FL = Ng‘FL (%) )

whereo is normally unity but is damped to 0.75 for robustness in sasaevhich shocks are
expected to appear.

At each timestep we apply a single inexact Newton iterats@e( e.g., [11]) to Equation (2)
through the two-step sequence of (approximately) solumegNewton correction equation

(ol + 7)) 6 = (), ©
At
where/ is the identity matrix, and then updating the iterate wia= u‘~' + ju’. We employ
matrix-free Newton-Krylov methods (see, e.g., [6]), withiesh we compute the action of the
Jacobian on a vectar by directional differencing of the fornfi (u)v ~ =/ "\wherep
is a differencing parameter. We use a first-order analy8crétization to compute the corre-
sponding preconditioning matrix.

We explore the standard aerodynamics test case of tranffmmiover an ONERA M6 wing
using the frequently studied parameter combination ofestream Mach number of 0.839 with
an angle of attack 03.06°. The robustness of solution strategies is particularlyartemt for
this model because of the so-calle@hock that develops on the upper wing surface, as depicted
in Figure 1. As mentioned earlier, the PDEs are discretizedding a first-order scheme; but
once the shock position has settled down, a second-ordaetimtion is applied. This change
in discretization affects the nature of the resulting Inggstems. The time for the complete
simulation is dominated by the time to solve the linear systgenerated at each nonlinear
iteration, where this phase typically requires around #tqr& of the overall time. Moreover,
changes in the numerical characteristics of the linearegystreflect the changing nature of
the simulation. For example, the use of pseudo-transienttragation generates linear systems
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that become progressively more difficult to solve as the Etian advances. This situation is
discussed further in Section 4; in particular, see the figird graph of Figure 2.

3. ADAPTIVE SOLVERS

Applications where the properties of the linear systemfdsgignificantly throughout the
simulation, such as PETSc-FUN3D’s [2] modeling of compigs<£uler flow, are an ideal case
for exploring adaptive solvers. Our goal is to improve ollggarformance by combining more
robust (but more costly) methods when needed in partigutdrhllenging phases of solution
with faster (though less powerful) methods in other phas&daptive solvers are designed
with the goal of reducing overall execution time by dynarijicaelecting the most appropriate
method to match the needs of the current linear system.

Adaptive solvers can be defined by the heuristic employedniethod selection. The effi-
ciency of an adaptive heuristic depends on how appropyidtdetermineswitching pointsor
the iterations at which to change linear solvers. Adaptieristics monitor changes indi-
catorsto detect switching points. We have observed that a conibmaff several indicators
generally leads to better results. Some common exampleslafaitors are linear (nonlinear)
solution time, convergence rate, change in nonlinear uasigbrm, etc.

In this paper we employ sequence-based adaptive heuyistiosh rely on a predetermined
sequence of linear solvers and then “switch up” to a moresbbut more costly method or
“switch down” to a cheaper but less powerful method as neédeidg the simulation. In this
class of heuristics, only three methods are compared whéingha given switching point
decision — the current method and the methods directly giregeand succeeding it in the
sequence. Adaptive heuristics are nonsequence-basedalillea methods in the available set
are compared. This class of adaptive methods requires nmoeefor method selection than
does the sequence-based class but has greater flexib@édye8ce-based methods are used in
simulations where linear systems tend to become progedgslifficult or easier; nonsequence-
based strategies are used in applications where a mongattén is missing. As discussed in
Sections 2 and 4, the PETSc-FUN3D simulation falls in thenfarcategory.

We employed the following two indicators to construct thati/e, polyalgorithmic solver:

e Nonlinear residual normThe pseudo-transient continuation depends on the CFL num-
ber [8], which, as explained in Section 2 and shown in theHaftd side of Figure 2,
increases as the nonlinear residual norm decreases. As thewhber increases, the
corresponding Newton correction equations (3) become miiffieult to solve. Thus, in
this case the nonlinear residual norm is a good indicatdnefevel of difficulty of solv-
ing its corresponding Newton correction equation: the lotlie residual norm, the more
difficult the linear system is likely to be. Based on trial rarishe application, we divided
the simulation into four sections: (&) (u)|| > 1072, (b) 107* < [|f(u)|| < 1072, (c)
10719 < [|f(w)]| < 1074, and (d)||f(u)]| < 107'°. Whenever the simulation crosses
from one section to another, the adaptive method switches dpwn accordingly.

e Average time per nonlinear iteratio®ur second indicator provides a rough estimate of
the strength of the linear solver. The higher the value ofitickcator, the more likely
the solver is to effectively solve difficult linear systenitie base solvers are arranged in
increasing order of their corresponding indicator values.
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The parallelization of the adaptive scheme was straightiall; we invoked the linear solvers
as determined by the heuristic, without redistributingpbeallel data. No changes were needed
to either the compressible Euler code or the base paraliedrsan PETSc [3] to accommodate
this adaptive approach.

4. EXPERIMENTAL RESULTS

To perform numerical experiments on the compressible Eagplication introduced in Sec-
tion 2, we used the Jazz cluster at Argonne National Labogratehich has a Myrinet 2000
network and 2.4 GHz Pentium Xeon processors with 1-2 GB of R®Mr experiments focus
on a problem instance designated as 1Grid (with 357,90@esrand 2.4 million edges), which
generates a Jacobian matrix of rank approximatedy 10° with 1.3 x 10® nonzeros. The large
problem size makes it imperative to use a multiprocessdritaature. We ran the simulations
on 4, 8, 16, and 32 processors using various Krylov methodsvarious subdomain solvers
for a block Jacobi preconditioner with one block per prooesthe relative linear convergence
tolerance wad0~3, and the maximum number of iterations for any linear solve @a. The
left-hand side of Figure 2 shows how the CFL number increas#iseanonlinear residual norm
decreases for the pseudo-transient Newton-Krylov algarjtthis situation was discussed in
more detail in Section 2. The right-hand side of Figure 2 shthwe time per nonlinear iteration
for various solvers on four processors.
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Figure 2. Left: Convergence rate (lower plot) and CFL number (upper plot) Hertdase and
adaptive solvers on 4 processoRight: Time per nonlinear iteration for the base and adaptive
solvers on 4 processors.The labeled square markers iaditesn linear solvers changed in the
adaptive algorithm.

We employed four linear solvers: (1) GMRES with a block Jad@&di) preconditioner that
uses SOR as a subdomain solver, designated as GMRES-SOR¢@)jbgate gradient squared
(BCGS) with a BJ preconditioner that uses no-fill incompletédiazation (ILU(0)) as a subdo-
main solver, called BCGS-ILUQ; (3) flexible GMRES (FGMRES) witB&preconditioner that
uses ILU(0) as a subdomain solver, designated as FGMRES:aniD(4) FGMRES with a BJ
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preconditioner that uses ILU(1) as a subdomain solvered®&GMRES-ILU1. We considered
these as traditional base methods that remain fixed thratidghe nonlinear solution process,
and we also combined them in an adaptive scheme as introdu&edtion 3. We ordered these
methods for use in the adaptive solver as (1), (2), (3), @oading to the average time taken
per nonlinear iteration in the first-order discretizatidrape of the simulation, which can serve
as a rough estimate of the strength of the various lineaeselor this application. The graphs
in Figure 3 show the switching points among these methodearatiaptive polyalgorithmic
approach. The simulation starts with method (1), then $wegdo method (2) at the next iter-
ation. The switch to method (3) occurs at iteration 25. Tisemitization then shifts to second
order at iteration 28, and the initial linear systems beceasger to solve. The adaptive method
therefore switches down to method (2). From this point owiire linear systems become pro-
gressively more difficult to solve as the CFL number increabesadaptive method switches up
to method (3) in iteration 66 and method (4) in iteration #9the right-hand graph of Figure 2,
this last change is accompanied by an increase in the tines ik the succeeding nonlinear
iteration. This increased time is devoted to setting up #ve preconditioner, which in this case
changes the block Jacobi subdomain solver from ILU(0) to(I)land consequently requires
more time for the factorization phase.
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Figure 3. Performance of base and adaptive methods on 4gs@mseleft: Residual norm
vs. nonlinear iteration numbeRight: Residual norm vs. cumulative simulation time. The
labeled square markers indicate when linear solvers claaimgthe adaptive algorithm. The
first solution method was GMRES-SOR, and switching occurrétiations 1, 25, 28, 66, and
79.

The execution time of the adaptive polyalgorithmic sches®&i better than the fastest base
method (FGMRES-ILUO) and0% better than the slowest one (BCGS-ILUO). We also observe
that the final nonlinear residual norm obtained by using thegoive method is comparable to
that obtained from the best base method1(0~'*)). In addition, the number of linear iterations
required by the adaptive method for the overall simulatgsmaller than that needed by any of
the base methods. The overhead for switching among bas®dseththe adaptive scheme is
minimal: approximately).02% — .06% of the total execution time.
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Time for Nonlinear Converegence (Adaptive Method) Cumulative Time on Different Numbers of Processors

100 T T T - 3000 T T

—— 4 Proc.
8 Proc.

- - -16 Proc.| 2500}

----32 Proc.

I fgmres-ilul
I figmres—iluQ)
[ gmres-sor | |
[Jbcgs-iluo
[_Jadapt

.
OI

100 F 2000

10 1500F

1070 1000{-

Nonlinear Residual Norm
Cumulative Time (Seconds)

H
S
T

.
OI

500

i

500 1000 1500 2000 2500 8 16 32
Cumulative Time (Seconds) Number of Processors

,_.
°,
5
S}

o

Figure 4. Performance of base and adaptive algorithms onl4,&nd 32 processors.

Figure 4 shows the performance of the adaptive method on¥5,8nd 32 processors. As
the number of processors increases, the simulation regess time to converge. Although the
best base method varies with the number of processors (FGMRESfor 4, 8, and 32 proces-
sors, to GMRES-SOR for 16 processors), the adaptive methald/ég/s the one requiring the
least time. The improvement of the adaptive scheme comparée: best base method varies
from 2% to 7%. Moreover, as it is impossible to knosvpriori what particular linear solution
algorithm will be fastest for a long-running nonlinear slation, the adaptive, polyalgorithmic
approach adjusts linear solvers according to the levelsfiaéudty encountered throughout a
given run.

We consider the speedups of the adaptive and base solvamire . Since this large-scale
problem size requires a minimum of 4 processors, welyse the best estimate of the time for
the full simulation on one processor using the fastest bathad. We sef; to four times the
time required with FGMRES-ILUL. We calculate the speedup = 41 whereT,, is the observed
time onp processors. The results show that the speedup of the aeiapethod is almost ideal
and as good as or better than any of the base methods.

5. CONCLUSIONSAND FUTURE WORK

In this paper we presented an adaptive, polyalgorithmicagah that dynamically selects a
method to solve the linearized systems that arise in the BETEN3D application’s modeling
of compressible Euler flow using a pseudo-transient Newtgmev method. This approach re-
duced overall execution time by using cheaper though leseol linear solvers for relatively
easy linear systems and then switching to more robust bue wwstly methods for more dif-
ficult linear systems. Our results demonstrate that adagtiwers can be implemented easily
in a multiprocessor environment and are scalable. We arama@stigating adaptive solvers in
additional problem domains and considering more adapfipecaches, including a polynomial
heuristic where the trends of the indicators can be estuaditting a function to the known
data points. We also are combining adaptive heuristics wgh-performance component in-
frastructure for performance monitoring and analysis,escdbed in [12, 13].
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Speedup of Base and Adaptive Methods
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Figure 5. Scalability of the base and adaptive algorithm4,d) 16, and 32 processors.
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